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Rate-and-state theory of plastic deformation near a circular hole
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We show that a simple rate-and-state theory accounts for most features of both time-independent and
time-dependent plasticity in a spatially inhomogeneous situation, specifically, a circular hole in a large stressed
plate. Those features include linear viscoelastic flow at small applied stresses, strain hardening at larger
stresses, and a dynamic transition to viscoplasticity at a yield stress. In the static limit, this theory predicts the
existence of a plastic zone near the hole for some but not all ranges of parameters. The rate-and-state theory
also predicts dynamic failure modes that we believe may be relevant to fracture mechanics.
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PACS numbeps): 83.50-v, 46.35:+2z, 62.20.Fe

[. INTRODUCTION sion of the STZ theory to a spatially inhomogeneous situa-

Since the work of Harf1] in the 1960’s, scientists have tion and to make contact with conventional plasticity theory.
understood that a satisfactory theory of plastic deformatiotWe especially want to learn whether the conventional picture
in solids must include dynamic variables that describe thef a time-independent plastic zone appears in the static limit.
internal states of materials. The deformation field itself canlLooking ahead to fully dynamic situations such as fracture,
not be sufficient. It cannot, in any natural way, describe theve also want to understand the dynamics of plastic flow in
irreversible changes that lead to hysteretic stress-strairegions of concentrated stress. We shall show that the con-
curves, or to the transition from nonlinear viscoelastic toventional time-independent conceptthe “yield-surface”
viscoplastic behavior with increasing applied stress. Converhypotheselsdo emerge from dynamic theories in an approxi-
tional theories of plasticity cope with these limitations by mate way in many normal situations. As we shall argue,
specifying phenomenological rules to suit various situationdiowever, the rate-and-state theory is simpler, richer, and
and histories of deformation. For example, strain hardeningnore general than the conventional approaches.
curves, viscoplastic laws, or the distinctions between loading The problem of describing spatially inhomogeneous plas-
and unloading behaviors are determined from experimertic deformation is best approached by looking at a simple
and used as needed in computations. In most treatments thesgample where questions of time dependence and compat-
is also a sharp distinction between time-independent anibility are not obscured by mathematical details. A growing
time-dependent behaviors, with little or no indication of how circular hole in a very large stressed plate satisfies the crite-
these properties may be related to one another. We believ@n of simplicity. It shares important features with the case
that a deeper, more nearly fundamental level of phenomenobf plastic deformation near a crack tip; the tractions are ap-
ogy is required for modern applications, for example, forplied at a distance and the stresses are concentrated near the
computing deformations near moving crack tips. Plasticity ishole. Several researchers have addressed the problem of dy-
an intrinsically time-dependent phenomenon; time-namic hole growth in the context of ductile fracty&] and
independent descriptions should emerge as static limits afpallation[7]. Carroll and Holt and later Johnson included
fully dynamic theories. inertial effects but neglected rate dependent plasti@ty].

In a recent papdi2], Falk and one of the present authors Bodner and Partom used a version of a conventional rate
(Lange) proposed a theory of plastic deformation in amor-dependent plasticity theory but did not study a stress con-
phous solids in which they introduced an internal state varitrolled situation[9].
able to describe the orientations of what they called “shear- The scheme of this paper is as follows. In Sec. II, we
transformation zones.”(We refer to this as the “STZ” derive equations of motion for the radius of the circular hole
theory) The resulting “rate-and-state” equatiofa concept and the surrounding stress field, assuming a general form for
that is widely used in the seismological literat{i8e4] and in  the constitutive relation that governs the rate of plastic de-
recent theories of frictiofi5]) successfully describe the full formation. Section Il contains a brief summary of several
range of viscoelastic and viscoplastic phenomena, includingesults of conventional plasticity theory that will serve as
hysteretic effects. The basic structure of the STZ theory appoints of comparison for the rate-and-state analysis. A sim-
pears to be broadly applicable. The new internal state variplified version of the STZ model is introduced in Sec. IV A
able might equally well describe, for example, anisotropy inwhere, for completeness, we outline some important proper-
the way dislocations pile up near defects in crystalline mateties of this model that were reported previously[#] and
rials. [10]. We describe the dynamic behavior of the STZ model

Reference] 2] discusses plasticity only in spatially uni- for the hole problem in Sec. IV B. The paper concludes with
form situations. Our purpose here is to apply a simple verremarks about the implications of these results in Sec. V.
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[l. DYNAMIC PLASTICITY IN A CIRCULAR GEOMETRY whereD is some function o§ and possibly other variables as
indicated by the ellipses. Combining EQ.9) with the com-

Throughout this analysis, we consider only a two-__ . .. . o .
dimensional solid in a state of plane strain, and assume th tat|b|I|ty condition (2.3), the elasticity equationé2.5), and

inertial effects are negligible. Suppose that a circular hole in- °® balancg2.6), we find
this system has radiug(t) at timet. Outward tractions at the (1-v). C(t)

distant edges of the plate cause the prespuia from the D(s,...)+ s=—7 (2.10
hole to bep— — o, . We introduce polar coordinatesnd 0

that define an Eulerian reference frame, so thait) isthe  \yhereC(t) is anr-independent constant of integration. Fur-

radial displacement, measured from some initial referencgner analysis using the boundary conditié@s?) and(2.9) at
state, of the material currently at position The function [ _R yields

u(r,t) is the only degree of freedom in the problem.

"

The total rate-of-deformation tens@ncluding both elas- 1-2v .
tic and plastic partsis diagonal with components C(t)=|1+ s(Rit) | RR, (211
ov v
DE="5 Di=r, CE

1 R =dr
wherev is the material velocity: 1- ;S(R,t)}§=2fR TD(s(r,t), L), (212

oulat (2.2) Equations(2.10—(2.12), supplemented by equations of mo-

1—duldr’ tion for other arguments dP(s, . . . ), constitute a coupled

. tot ; : set of first-order differential equations suitable for computing

For small strains, the ten_sd? is approximately equal to the time evolution o&(r,t) andR(t).

the total strain-rate tenSQfIOt. Equa“on(Zl) Implles that If R(t) is the On|y |ength scale in the problem’ we can

the components oP ™' satisfy the compatibility condition look for self-similar solutions in whichR/R=w=const so
9 that the hole radius is growing exponentially. All functions
_(rpt;’;)zpﬁft_ 2.3 depend only oné=r/R(t). Combining the expression for
or C(t) in Eqg. (2.11 with Eq. (2.10, and transforming to the

scaling variableZ, we find

\

The stress tensor has the form
(1-v) §d§ ) 1+(1—2v)~(1)}
- wé—= —— s .
de & P
Here, s=(oyy—0,,;)/2 is the deviatoric stress. The elastic (2.13
stress-strain relations are

o= —p=5, g —p+S. @4 G ..

Force balancé2.6) plus the boundary conditiof2.7) imply
2u sﬁl= —(1-2v)p—s, 2u 83!9= —(1-2v)p+s,

>dé.
(2.9 Uw=2f zfqu (2.14
1
wherepu is the shear modulus andis Poisson'’s ratio. In the
absence of inertial effects, balance of forces implies If these self-similar solutions exist fav>0, they describe
unbounded plastic failure of the material.
p_ 19 , 26
a2 2.8 Il. CONVENTIONAL THEORIES
The boundary condition at=R is In a typical time-independent approach to this problem
[11], one assumes that there exists a maximum valug of
— o (R =p(R,t)+s(R,t)=0. 2.7 say sy, and that, in any sufficiently slow deformation, the

material adjusts its state so thats, everywhere. Techni-
For simplicity, we neglect surface tension. AlsoratR, we  cally, the conditiors=s, is a special case of a Tresca yield
have surface in the space of stress components. For present pur-
poses, we take this assumption to mean that the hole is sur-
ot rounded by a plastic zoneR<r<R;, within which the
R Posls(R), ... ]. (2.8 force-balance equatiof2.6) remains valid but the condition
s=s, replaces Hookean elastici{.5). Outside this zone,

o _ e R2 -
Here and elsewhere, dots above symbols denote derivativés” R, P=—o0.. ands=s,Ri/r?. Continuity of stress aR,

with respect to time. means that, within the zonp= — o..— 2s,In(r/Ry). Then the
For incompressible plasticity, the constitutive relation hagooundary conditior(2.7) atr =R implies that
the form
n—=—|—— _
Dhy=—DN=D(s, ...), 2.9 R™2l5,
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Thus, these assumptions predict that a stationary state withearlier one-dimensional analysj40]. As in the Bingham
nonvanishing plastic zone exists fot,>s, . A calculation case, the model is specified by the functiDgs, ...) de-
of the displacements similar to that described by IHIP] fined in Eq.(2.9). For two-dimensions, with circular symme-
shows that the hole radiuR diverges asr,, approaches an try, we write

upper threshold stress!" which (for the cases,/u<1) is

; 1
given by D(s,A)=—(As—A), 4.7
th 4
fope u
5 —1ltin 251=v))" (3.2 and supplement this by an equation of motion for the state
y y v) ; .
variableA:
To see what happens above this stress, we must consider a )
time-dependent theory. A=D(s,A) (1-ysA). (4.2

The simplest conventional time-dependent hypothesis i

the Bingham law which, fos=0, we can write in the form 3(r,t) is the single independent element of a diagonal, trace-

less tensor which describes the local anisotropy of the shear-
a(s—s,) fors=s, transformation zones. We are omitting the other state vari-
(3.3 able in [2] that describes the density of STZ's on the
assumption that this quantity quickly reaches its equilibrium
where «a is a response coefficient. Essentially by definition,value' Mo_re importantly, this simplified version of the STZ
the combination of Eq(3.3 with Egs. (2.10—(2.12 de- model omits the stronglg-dependent rate factor that governs
scribes an elastic perfectly plastic material whose stationar emory effects. This version is qualitatively sensible if we

states, fors,< o ~o" are the same as those described in oad the system only once in one direction, but it does not

) ehave properly if the loading is cycled in any way.
the preceding paragraph. We have checked that these StaPes‘The ir?verpse Ztresg can be ?eliminyated in favzr of)(; group

?Zrelgt_azglelz)attraﬁ;?rr]sg bythfm%n;g'?’) égngfognraf(f(gs' of parameters that plays the role of a dynamic yield stress,
=-<ro<,R2(().)/r’2 [for r >R(0)]. We found no surprises; a,plas— specifically, s,= 1/yAy. Note what is happening here for
tic zone consistent with Ed3.1) forms around the growing s.pat|ally.un|form S|tu-at|ons. Fos<sy, A(t? r|1as its staple
hole. fixed points on the lineA=\s, whereD=¢},=0. In this
We also can compute the self-similar solutions of Eg.region, the material is nonlinearly viscoelastic. Bsts, or,

(2.13 for the Bingham model. For ease of analysis, we writequivalently, y—0, it obeys a conventional creep-
these for the case of incompressible elastiaity,1/2. Inthe ~ compliance law[10]:

outer, elastic regions> &, = (u/s,)*?

’D(s)=[

0 otherwise,

t

1 .
3 e sgg(t):xs(t)—xf_ dt’ exp[—;(t—t') s(t').
S(g):sy(g) , (3.4 4.3
and, in the plastic regiors=s,, 1<¢&<¢,, We obtain a particularly important result by supposing
that the system is initially in a state witf,=A=0 and that
Hw a stresss<s, is applied suddenly at time=0. A simple

s(§)=sy+ , (39 calculation then yields

1 B+2
el

£ &1
where B(w)=2ual/w. Note that the exponeng becomes ol _ pl B ?\5§| 1 s?
indefinitely large in the limit of smalk; thus the second Eiina= € po(t—0) = = 57 In| 1= )
term in the square brackets in E®.5 produces a function

's(¢) that is sharply bent but continuous &t &;. To com- gP'(t) approache%ﬁ,’1a| exponentially in time with a relax-

plete the calculation, we use E@.5 to evaluate the right- ation time 7, that diverges as—s,,
hand side of Eq(2.14). After rearranging and taking the

patow

(4.4

limit of small w, we find T
Trelale_(sls )2' (45)
y
a
= (o= o), (3.6 N4 s a stral . Catid
Sy Equation(4.4) is a strain-hardening curve; that is,,, is the

. . _ nonrecoverable plastic strain produced after an infinitely
whereo?! is the upper threshold defined in E@.2). Thus, long time by the deviatoric stress In the limit A\—0, with
as expected, the dynamic failure modes start where the time;, held constantgf,, vanishes fors< s, but can have any

independent theory breaks down. positive value fors=s, . Thus, the parameter is a measure
of the deviation from perfect plasticity. The diverging relax-
IV. STZ MODEL ation time nears=s,, however, has no simple analog in

conventional descriptions of strain hardening.
This one-parameter fit4.4) to the shape of the strain-
For present purposes, it will be sufficient to use the sim-hardening curve is much too simple even for the fully non-
plified version of the STZ model that we introduced in anlinear STZ model, where the behaviors at small stresses and

A. Basic properties
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FIG. 1. Deviatoric stress in units of u as a function of the FIG. 3. Same as in Fig. 1 but withs,=0.05. Note that the

distance from the center of the hole in units of the initial hole radiusapproach to a stationary state is faster and that the plastic zone is
shown at several times after the application of the stress much less pronounced.
=0.2u. The yield stresss,=0.1u, Poisson’s ratiov=0.3, \s,

=0.005. =s,, A=\s, forms around it. Apart from the fact that the

outer boundary of the plastic zone is smooth rather than
sharply defined, this static limit of the time-dependent defor-
ation is qualitatively consistent with conventional, time-

at stresses neay, are determined by different groups of pa-
rameters. Moreover, the smallbehavior of thig—o curve

is not what is measured experimentally. In real materials an dependent plasticity theory.
in the full STZ theory, the plastic deformation rates at small In Fig. 3, we show an analogous set of curves for a sub-
stresses are too small to be observed, and the material bg; ’

i ) . . ._Stantially larger value ok, specifically,\s,=0.5. Accord-
haves as if it were purely elastic. For an illustration of th|smg to Eq. (4.4), this system deviates appreciably from per-
behavior, see Fig. 5 if2]. ST

fect plasticity. A plastic zone does form around the hole, but
Fors>s,, A goes to 1fs and it has no sharp outer boundary. If we estimate the position of
N ~ this boundary, say, by finding the point of inflection in the
| D P S N final curves(r), we find that the relatiori3.1) is strongl|
ehp— Ts(s sy)= . (s—sy). (4.6 violated. (r) 13.1) aly

As in the Bingham model discussed in Sec. lll, the STZ

In dynamic situations at large stress, therefore, the ST#nodel predicts the existence of unbounded failure modes for
model looks like a Bingham plastic. In short, even thissufficiently large ... The stationary states of the kind
highly simplified version of the STZ model describes muchshown in Figs. 1 and 3 cease to exist beyond Indeed, as

of both static and dynamic plasticity. we show in Fig. 4 the radius of the hole diverges-&t. We
find these dynamically growing states via the scaling analy-
B. Dynamically growing hole sis of Eqs.(2.13 and(2.14). It is useful to make the follow-

. _ . ing changes of variables:
We return now to the circle problem. As a first investiga- g g

tion, we have numerically integrated EqR.10—(2.12, R(t) 1
supplemented by Eq4.2), to find the time evolution of 2 =?=§, s(rit)=sygp(£),  A(r,t)=Asye({).
s(r,t), A(r,t), andR(t). In Figs. 1 and 2, we show what @.7)
happens if we suddenly apply the stress(r,0) ’
=0,.R?0)/r?. We set\s,=0.005, s,=0.1x, and o,

=0.2u and assume a previously undeformed systemWe find

A(r,0)=0. For these values of the parameters, the hole

grows for a while and then stops, and a plastic zone with I .

As, = 0.005
Sy = 0.g5

Rﬁnal
£(0)
2

7/ R(0) ’ FIG. 4. Final radius of the hole measured in units of the initial
hole radius vs the applied stress in units of the corresponding
FIG. 2. Time evolution of the dimensionless grofp\ u for threshold stress for three values\d, . s,=0.1u. The solid line is
the same values of the parameters as in Fig. 1. the prediction for the Tresca plastic.
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FIG. 5. Threshold stress in units of the yield stress as a function FIG. 6. Similarity solutionss[r/R(t)] in units of w for three
of \ in units of 15, . Note that for soft materials, the threshold for different values of the hole growth rat& measured in units of &/

unbounded failure is smaller than the yield stress. As,=0.005,s,=0.1u.
21-v)or d¢y o1 Sy sy the material is highly deformable and conventional plas-
Y=ot ,u—)\gd_g =ys o1t (1-2v) ;lﬂ(l) : ticity theory has no range of validity. We illustrate this point
Y (4.9 inFig.5.
Expanding the solutions of Eq$4.8) and (4.9) to first
The equation of motion foA, i.e., Eq.(4.2), becomes order inw, we find the following behavior near threshold:
Fors,/u<2\s <1,
de
2w7§d—§=(¢/— @) (1= ¢y). (4.9 2\
o=~ —[1+2)s,In(As,)] (o.—0oM), (419

Finally, Eq.(2.14 becomes
1dg and, forns,>1,
o.=s, [ Fuo. 4.10

A th
w~—(0.,— o). (4.19
As a first step in interpreting these equations, we compute T
the thresholds'" by taking the limitw— 0. To avoid unnec-
essary complication, we again set 1/2. In this case, Egs. In each of the last two equations, the quantty has the
(4.8 and (4.9) reduce toy~ ¢ and, after a simple integra- value computed in the corresponding limit in the previous
tion, paragraph.
We have studied the behavior of the similarity solutions
1+y) s, (4.8—(4.10 numerically. Just as in the Bingham plastic, the
?\Sym(m) +—=y=_. (4.1)  deviatoric stress at the surface of the hole in the STZ mate-
H rial grows with the hole expansion raté& as shown in Fig.
6. While intuitively obvious, this result is relevant to under-
standing stress transmission to brittle crack tips. In Fig. 7 we
show the\-dependence of the stress for a slowly expanding
) hole. This solution is essentially the— 0 limit obtained in

Note that ifs,/u<1 (which is generally true for realistic
situationg, then

(4.12 Eqg. (4.17). In a “softer” material with larger\, the plastic
zone shrinks and disappears completely for a large enough

. {
l//(é“)=tan|‘(fsy

This solution exhibits a plastic zone with a smooth elastic-

I T T
plastic boundary only foas,<1, in which case there is a
region betweed =2\s, and =1 in which y~1. 0.1 D N — ﬁﬁ’;j = 81825 ]
It is easy to computes({) without making the latter ap- N N Asy = 0.5

proximation and, via Eq4.10), to obtain the threshold stress 3 !
ol I (s, /p)(1+ 2 u) <1, then u

0'2? 7 \‘\\\ \\\\‘~\\\\“§\

—~1+In| —|=In(1+2\u), (4.13 e T ]

Sy S/ T T e

0 L 1 | bl dutole

which agrees with E¢(3.2) when\=0 andv=1/2, i.e., in ! 2 r/g(t) 4 5

the limit of perfect plasticity. Note that we have chosen the
parameters in Fig. 1 to lie within this range. If, on the other  FIG. 7. Similarity solutionss[r/R(t)] in units of u for three
handAs,>1, thenai?%l/Z)\. Here the threshold lies below different values of\s, for a small growth rates7=0.0001.
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\. This softening of the material for larger leads to the differently to subsequent changes in stress than will the un-
decrease in the threshold stras$ above which dynamic deformed material outside it. To take advantage of this fea-
failure modes exist. ture, however, we must go beyond the truncated version of
the STZ model that we have used here and include the
V. DISCUSSION strongly nonlinears-dependent rate factor derived [il].
Without doing any further calculations, we can see how
Our principal point is that the STZ model, a simple ex- the nonlinear rate factor produces memory effects. Suppose
ample of a rate-and-state theory, provides an extremely comhat we start in a stressed configuration such as the one
pact and physically motivated description of essentially all ofshown in Figs. 1 and 2 in which a plastic zone has formed
plasticity theory, both static and time dependent. In just twoaround the hole; and suppose that we then unload the system
constitutive relationsi4.1) and(4.2), containing just two di-  py quickly reducing the external stress to zero.sAt0, the
mensionless groups of parametesgsiu andAs,, plus one  rate factor becomes extremely small; in the absence of a
time constantr, we capture linear viscoelasticity at small stress that can induce transitions from one orientation to an-
stress, strain hardening at larger stress, and a dynamic tragther, the zones remain as they were in the previously
sition to viscoplasticity at a yield stress. All of these proper-stressed state. That i4(r) remains unchanged on unload-
ties have been described previously{#} for homogeneous ing. The system relaxes elastically, but the plastic degrees of
situations and i10] for an inhomogeneous one-dimensional freedom do not revert to their earlier values. Accordingly,
case. there must be residual stresses in the region near the hole.
In this paper, our principal interest has been to make conThe material will “remember” the magnitude and direction
tact with conventional theories of plasticity by looking at of its previous loading because it “knows” the function
deformation near a circular hole. As a rule, we recover conA (r), which will determine via the nonlinear generalizations
ventional results when bots,<u and\s,<1. The first of  of the constitutive equationgt.1) and (4.2) what happens
these conditions, that the yield stress must be much less thaghen new stresses are applied.
the shear modulus, is generally true for ordinary materials. The other feature that we have emphasized in this analysis
The second condition, according to Hd.4), says that the s the dynamic failure that occurs af”, a feature that also
plastic strain at which large-scale deformations start to ocCUccurs in the conventional time-dependent theories. We be-
must be much smaller than unity. This too is ordinarily sat-jieve that the dynamic growth modes may provide a clue for
isfied by rigid solids. However, it remains to be seen whethekg|ying a long-standing puzzle in the theory of fracture, spe-
this A-dependent condition might be modified in more real-cifically, the question of how breaking stresses can be trans-
istic parameterizations of rate-and-state theories. _ mitted through plastic zones to crack tips. This puzzle per-
One place where the rate-and-state theory differs qualitamins to quasistatic crack advance, which would seem to be
tively from conventional plasticity is in the interpretation of jmpossible if, as in conventional plasticity theory, the
the strain hardening curvet.4). Here, this curve must be stresses near a crack tip are constrained to be less than or
interpreted as thé—-ce limit of the dynamic inelastic re- equal to the yield stress. The new modes, especially those
sponse to an externally applied stress, not as an instantgyat occur when there is appreciable deviation from perfect
neous response that is mathematically equivalent to nonlinyjasticity, raise the possibility that, like the growing hole,
ear elasticity. Moreover, the paramelethat determines the  crack growth could occur via plastic flow near the tip. We

deviation from perfect plasticity in Eq4.4) is the same pa- hope to explore this possibility in a subsequent report.
rameter that appears in the viscoplastic @), and is also

the same parameter that determines both the shape of the
plastic zone and the threshold” at which static solutions
give way to time-dependent, unbounded failure modes. We thank Zhigang Suo for suggesting that we study the

Perhaps the single most important advantage of the SThHole problem as a way to understand the issues raised in this
theory is that the material in the plastic zone is characterizegaper. This research has been supported primarily by U.S.
not just by the stress and corresponding displacement field3OE Grant Nos. DE-FG03-84ER45108 and DE-FGO3-
but also by the state variable. This variable tells us in a 99ER45762, and in part by the MRSEC Program of the NSF
natural way that the material inside the zone will respondunder Project No. DMR96-32716.
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