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Rate-and-state theory of plastic deformation near a circular hole
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We show that a simple rate-and-state theory accounts for most features of both time-independent and
time-dependent plasticity in a spatially inhomogeneous situation, specifically, a circular hole in a large stressed
plate. Those features include linear viscoelastic flow at small applied stresses, strain hardening at larger
stresses, and a dynamic transition to viscoplasticity at a yield stress. In the static limit, this theory predicts the
existence of a plastic zone near the hole for some but not all ranges of parameters. The rate-and-state theory
also predicts dynamic failure modes that we believe may be relevant to fracture mechanics.
@S1063-651X~99!14011-X#

PACS number~s!: 83.50.2v, 46.35.1z, 62.20.Fe
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I. INTRODUCTION

Since the work of Hart@1# in the 1960’s, scientists hav
understood that a satisfactory theory of plastic deforma
in solids must include dynamic variables that describe
internal states of materials. The deformation field itself c
not be sufficient. It cannot, in any natural way, describe
irreversible changes that lead to hysteretic stress-st
curves, or to the transition from nonlinear viscoelastic
viscoplastic behavior with increasing applied stress. Conv
tional theories of plasticity cope with these limitations
specifying phenomenological rules to suit various situatio
and histories of deformation. For example, strain harden
curves, viscoplastic laws, or the distinctions between load
and unloading behaviors are determined from experim
and used as needed in computations. In most treatments
is also a sharp distinction between time-independent
time-dependent behaviors, with little or no indication of ho
these properties may be related to one another. We be
that a deeper, more nearly fundamental level of phenome
ogy is required for modern applications, for example,
computing deformations near moving crack tips. Plasticity
an intrinsically time-dependent phenomenon; tim
independent descriptions should emerge as static limit
fully dynamic theories.

In a recent paper@2#, Falk and one of the present autho
~Langer! proposed a theory of plastic deformation in amo
phous solids in which they introduced an internal state v
able to describe the orientations of what they called ‘‘she
transformation zones.’’~We refer to this as the ‘‘STZ’’
theory.! The resulting ‘‘rate-and-state’’ equations~a concept
that is widely used in the seismological literature@3,4# and in
recent theories of friction@5#! successfully describe the fu
range of viscoelastic and viscoplastic phenomena, includ
hysteretic effects. The basic structure of the STZ theory
pears to be broadly applicable. The new internal state v
able might equally well describe, for example, anisotropy
the way dislocations pile up near defects in crystalline ma
rials.

Reference@2# discusses plasticity only in spatially un
form situations. Our purpose here is to apply a simple v
PRE 601063-651X/99/60~6!/6978~6!/$15.00
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sion of the STZ theory to a spatially inhomogeneous sit
tion and to make contact with conventional plasticity theo
We especially want to learn whether the conventional pict
of a time-independent plastic zone appears in the static li
Looking ahead to fully dynamic situations such as fractu
we also want to understand the dynamics of plastic flow
regions of concentrated stress. We shall show that the c
ventional time-independent concepts~the ‘‘yield-surface’’
hypotheses! do emerge from dynamic theories in an appro
mate way in many normal situations. As we shall arg
however, the rate-and-state theory is simpler, richer,
more general than the conventional approaches.

The problem of describing spatially inhomogeneous pl
tic deformation is best approached by looking at a sim
example where questions of time dependence and com
ibility are not obscured by mathematical details. A growi
circular hole in a very large stressed plate satisfies the c
rion of simplicity. It shares important features with the ca
of plastic deformation near a crack tip; the tractions are
plied at a distance and the stresses are concentrated ne
hole. Several researchers have addressed the problem o
namic hole growth in the context of ductile fracture@6# and
spallation@7#. Carroll and Holt and later Johnson include
inertial effects but neglected rate dependent plasticity@8,7#.
Bodner and Partom used a version of a conventional
dependent plasticity theory but did not study a stress c
trolled situation@9#.

The scheme of this paper is as follows. In Sec. II, w
derive equations of motion for the radius of the circular ho
and the surrounding stress field, assuming a general form
the constitutive relation that governs the rate of plastic
formation. Section III contains a brief summary of seve
results of conventional plasticity theory that will serve
points of comparison for the rate-and-state analysis. A s
plified version of the STZ model is introduced in Sec. IV
where, for completeness, we outline some important prop
ties of this model that were reported previously in@2# and
@10#. We describe the dynamic behavior of the STZ mod
for the hole problem in Sec. IV B. The paper concludes w
remarks about the implications of these results in Sec. V
6978 © 1999 The American Physical Society
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II. DYNAMIC PLASTICITY IN A CIRCULAR GEOMETRY

Throughout this analysis, we consider only a tw
dimensional solid in a state of plane strain, and assume
inertial effects are negligible. Suppose that a circular hole
this system has radiusR(t) at timet. Outward tractions at the
distant edges of the plate cause the pressurep far from the
hole to bep→2s` . We introduce polar coordinatesr andu
that define an Eulerian reference frame, so thatu(r ,t) is the
radial displacement, measured from some initial refere
state, of the material currently at positionr. The function
u(r ,t) is the only degree of freedom in the problem.

The total rate-of-deformation tensor~including both elas-
tic and plastic parts! is diagonal with components

D rr
tot5

]v
]r

; D uu
tot5

v
r

, ~2.1!

wherev is the material velocity:

v5
]u/]t

12]u/]r
. ~2.2!

For small strains, the tensorD tot is approximately equal to
the total strain-rate tensor«̇ tot. Equation~2.1! implies that
the components ofD tot satisfy the compatibility condition

]

]r
~rD uu

tot!5D rr
tot . ~2.3!

The stress tensor has the form

s rr 52p2s, suu52p1s. ~2.4!

Here, s5(suu2s rr )/2 is the deviatoric stress. The elast
stress-strain relations are

2m « rr
el52~122n!p2s, 2m «uu

el 52~122n!p1s,
~2.5!

wherem is the shear modulus andn is Poisson’s ratio. In the
absence of inertial effects, balance of forces implies

]p

]r
52

1

r 2

]

]r
~r 2s!. ~2.6!

The boundary condition atr 5R is

2s rr ~R,t !5p~R,t !1s~R,t !50. ~2.7!

For simplicity, we neglect surface tension. Also atr 5R, we
have

Ṙ

R
5D uu

tot@s~R!, . . . #. ~2.8!

Here and elsewhere, dots above symbols denote deriva
with respect to timet.

For incompressible plasticity, the constitutive relation h
the form

D uu
pl 52D rr

pl[D~s, . . . !, ~2.9!
-
at
n

e

es

s

whereD is some function ofs and possibly other variables a
indicated by the ellipses. Combining Eq.~2.9! with the com-
patibility condition ~2.3!, the elasticity equations~2.5!, and
force balance~2.6!, we find

D~s, . . . !1
~12n!

m
ṡ5

C~ t !

r 2 , ~2.10!

whereC(t) is anr-independent constant of integration. Fu
ther analysis using the boundary conditions~2.7! and~2.8! at
r 5R yields

C~ t !5F11S 122n

m D s~R,t !G RṘ, ~2.11!

and

F12
1

m
s~R,t !G Ṙ

R
52E

R

`dr

r
D„s~r ,t !, . . . …. ~2.12!

Equations~2.10!–~2.12!, supplemented by equations of mo
tion for other arguments ofD(s, . . . ), constitute a coupled
set of first-order differential equations suitable for computi
the time evolution ofs(r ,t) andR(t).

If R(t) is the only length scale in the problem, we ca
look for self-similar solutions in whichṘ/R5v5const so
that the hole radius is growing exponentially. All function
depend only onj5r /R(t). Combining the expression fo
C(t) in Eq. ~2.11! with Eq. ~2.10!, and transforming to the
scaling variablej, we find

D~ s̃, . . . !2
~12n!

m
vj

ds̃

dj
5

v

j2 F11S 122n

m D s̃~1!G .
~2.13!

Force balance~2.6! plus the boundary condition~2.7! imply

s`52E
1

`dj

j
s̃~j!. ~2.14!

If these self-similar solutions exist forv.0, they describe
unbounded plastic failure of the material.

III. CONVENTIONAL THEORIES

In a typical time-independent approach to this proble
@11#, one assumes that there exists a maximum value os,
say sy , and that, in any sufficiently slow deformation, th
material adjusts its state so thats<sy everywhere. Techni-
cally, the conditions5sy is a special case of a Tresca yie
surface in the space of stress components. For present
poses, we take this assumption to mean that the hole is
rounded by a plastic zone,R,r ,R1, within which the
force-balance equation~2.6! remains valid but the condition
s5sy replaces Hookean elasticity~2.5!. Outside this zone,
r .R1 , p52s` ands5syR1

2/r 2. Continuity of stress atR1

means that, within the zone,p52s`22syln(r/R1). Then the
boundary condition~2.7! at r 5R implies that

ln
R1

R
5

1

2 S s`

sy
21D . ~3.1!
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Thus, these assumptions predict that a stationary state w
nonvanishing plastic zone exists fors`.sy . A calculation
of the displacements similar to that described by Hill@12#
shows that the hole radiusR diverges ass` approaches an
upper threshold stresss`

th which ~for the casesy /m!1) is
given by

s`
th

sy
511 lnS m

2sy~12n! D . ~3.2!

To see what happens above this stress, we must consi
time-dependent theory.

The simplest conventional time-dependent hypothesi
the Bingham law which, fors>0, we can write in the form

D~s!5H a~s2sy! for s>sy

0 otherwise,
~3.3!

wherea is a response coefficient. Essentially by definitio
the combination of Eq.~3.3! with Eqs. ~2.10!–~2.12! de-
scribes an elastic perfectly plastic material whose station
states, forsy,s`,s`

th , are the same as those described
the preceding paragraph. We have checked that these s
are stable attractors by using Eq.~3.3! to integrate Eqs.
~2.10!–~2.12!, using the initial condition s(r ,0)
5s`R2(0)/r 2 @for r .R(0)#. We found no surprises; a plas
tic zone consistent with Eq.~3.1! forms around the growing
hole.

We also can compute the self-similar solutions of E
~2.13! for the Bingham model. For ease of analysis, we wr
these for the case of incompressible elasticity,n51/2. In the
outer, elastic region,j.j15(m/sy)

1/2,

s̃~j!5sy S j1

j D 2

, ~3.4!

and, in the plastic region,s>sy , 1,j,j1,

s̃~j!5sy1S mv

ma1v D 1

j2 F12S j

j1
D b12G , ~3.5!

where b(v)52ma/v. Note that the exponentb becomes
indefinitely large in the limit of smallv; thus the second
term in the square brackets in Eq.~3.5! produces a function
s̃(j) that is sharply bent but continuous atj5j1. To com-
plete the calculation, we use Eq.~3.5! to evaluate the right-
hand side of Eq.~2.14!. After rearranging and taking th
limit of small v, we find

v'
am

sy
~s`2s`

th!, ~3.6!

wheres`
th is the upper threshold defined in Eq.~3.2!. Thus,

as expected, the dynamic failure modes start where the t
independent theory breaks down.

IV. STZ MODEL

A. Basic properties

For present purposes, it will be sufficient to use the s
plified version of the STZ model that we introduced in
a

r a

is

,

ry
n
tes

.

e-

-

earlier one-dimensional analysis@10#. As in the Bingham
case, the model is specified by the functionD(s, . . . ) de-
fined in Eq.~2.9!. For two-dimensions, with circular symme
try, we write

D~s,D!5
1

t
~ls2D!, ~4.1!

and supplement this by an equation of motion for the st
variableD:

Ḋ5D~s,D! ~12gs D!. ~4.2!

D(r ,t) is the single independent element of a diagonal, tra
less tensor which describes the local anisotropy of the sh
transformation zones. We are omitting the other state v
able in @2# that describes the density of STZ’s on th
assumption that this quantity quickly reaches its equilibriu
value. More importantly, this simplified version of the ST
model omits the stronglys-dependent rate factor that govern
memory effects. This version is qualitatively sensible if w
load the system only once in one direction, but it does
behave properly if the loading is cycled in any way.

The inverse stressg can be eliminated in favor of a grou
of parameters that plays the role of a dynamic yield stre
specifically, sy51/Alg. Note what is happening here fo
spatially uniform situations. Fors,sy , D(t) has its stable
fixed points on the lineD5ls, whereD> «̇uu

pl 50. In this
region, the material is nonlinearly viscoelastic. Fors!sy or,
equivalently, g→0, it obeys a conventional creep
compliance law@10#:

«uu
pl ~ t !5l s~ t !2l E

2`

t

dt8 expF2
1

t
~ t2t8!G ṡ~ t8!.

~4.3!

We obtain a particularly important result by supposi
that the system is initially in a state with«uu

pl 5D50 and that
a stresss,sy is applied suddenly at timet50. A simple
calculation then yields

«final
pl [«uu

pl ~ t→`!52
lsy

2

s
lnS 12

s2

sy
2D . ~4.4!

«pl(t) approaches«final
pl exponentially in time with a relax-

ation timet relax that diverges ass→sy ,

t relax5
t

12~s/sy!2 . ~4.5!

Equation~4.4! is a strain-hardening curve; that is,«final
pl is the

nonrecoverable plastic strain produced after an infinit
long time by the deviatoric stresss. In the limit l→0, with
sy held constant,«final

pl vanishes fors,sy but can have any
positive value fors>sy . Thus, the parameterl is a measure
of the deviation from perfect plasticity. The diverging rela
ation time nears5sy , however, has no simple analog
conventional descriptions of strain hardening.

This one-parameter fit~4.4! to the shape of the strain
hardening curve is much too simple even for the fully no
linear STZ model, where the behaviors at small stresses
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PRE 60 6981RATE-AND-STATE THEORY OF PLASTIC . . .
at stresses nearsy are determined by different groups of p
rameters. Moreover, the small-s behavior of thist→` curve
is not what is measured experimentally. In real materials
in the full STZ theory, the plastic deformation rates at sm
stresses are too small to be observed, and the materia
haves as if it were purely elastic. For an illustration of th
behavior, see Fig. 5 in@2#.

For s.sy , D goes to 1/gs and

«̇uu
pl → l

ts
~s22sy

2!>
2l

t
~s2sy!. ~4.6!

In dynamic situations at large stress, therefore, the S
model looks like a Bingham plastic. In short, even th
highly simplified version of the STZ model describes mu
of both static and dynamic plasticity.

B. Dynamically growing hole

We return now to the circle problem. As a first investig
tion, we have numerically integrated Eqs.~2.10!–~2.12!,
supplemented by Eq.~4.2!, to find the time evolution of
s(r ,t), D(r ,t), and R(t). In Figs. 1 and 2, we show wha
happens if we suddenly apply the stresss(r ,0)
5s`R2(0)/r 2. We set lsy50.005, sy50.1m, and s`

50.2m and assume a previously undeformed syste
D(r ,0)50. For these values of the parameters, the h
grows for a while and then stops, and a plastic zone wits

FIG. 1. Deviatoric stresss in units of m as a function of the
distance from the center of the hole in units of the initial hole rad
shown at several times after the application of the stresss`

50.2m. The yield stresssy50.1m, Poisson’s ration50.3, lsy

50.005.

FIG. 2. Time evolution of the dimensionless groupD/lm for
the same values of the parameters as in Fig. 1.
d
ll
be-

Z

-

,
le

>sy , D>lsy forms around it. Apart from the fact that th
outer boundary of the plastic zone is smooth rather th
sharply defined, this static limit of the time-dependent def
mation is qualitatively consistent with conventional, tim
independent plasticity theory.

In Fig. 3, we show an analogous set of curves for a s
stantially larger value ofl, specifically,lsy50.5. Accord-
ing to Eq. ~4.4!, this system deviates appreciably from pe
fect plasticity. A plastic zone does form around the hole,
it has no sharp outer boundary. If we estimate the position
this boundary, say, by finding the point of inflection in th
final curves(r ), we find that the relation~3.1! is strongly
violated.

As in the Bingham model discussed in Sec. III, the S
model predicts the existence of unbounded failure modes
sufficiently large s` . The stationary states of the kin
shown in Figs. 1 and 3 cease to exist beyonds` . Indeed, as
we show in Fig. 4 the radius of the hole diverges ats`

th . We
find these dynamically growing states via the scaling ana
sis of Eqs.~2.13! and~2.14!. It is useful to make the follow-
ing changes of variables:

R2~ t !

r 2 5
1

j2 5z, s~r ,t !5syc~z!, D~r ,t !5lsyw~z!.

~4.7!

We find

s
FIG. 3. Same as in Fig. 1 but withlsy50.05. Note that the

approach to a stationary state is faster and that the plastic zo
much less pronounced.

FIG. 4. Final radius of the hole measured in units of the init
hole radius vs the applied stress in units of the correspond
threshold stress for three values oflsy . sy50.1m. The solid line is
the prediction for the Tresca plastic.
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c2w1
2~12n!vt

ml
z

dc

dz
5

vt

lsy
z F11~122n!

sy

m
c~1!G .

~4.8!

The equation of motion forD, i.e., Eq.~4.2!, becomes

2vtz
dw

dz
5~c2w! ~12wc!. ~4.9!

Finally, Eq. ~2.14! becomes

s`5syE
0

1dz

z
c~z!. ~4.10!

As a first step in interpreting these equations, we comp
the thresholds`

th by taking the limitv→0. To avoid unnec-
essary complication, we again setn51/2. In this case, Eqs
~4.8! and ~4.9! reduce toc'w and, after a simple integra
tion,

lsy lnS 11c

12c D1
sy

m
c5z. ~4.11!

Note that if sy /m!1 ~which is generally true for realistic
situations!, then

c~z!>tanhS z

2lsy
D . ~4.12!

This solution exhibits a plastic zone with a smooth elas
plastic boundary only forlsy!1, in which case there is a
region betweenz52lsy andz51 in which c'1.

It is easy to computec(z) without making the latter ap
proximation and, via Eq.~4.10!, to obtain the threshold stres
s`

th . If ( sy /m)(112lm)!1, then

s`
th

sy
'11 lnS m

sy
D2 ln~112lm!, ~4.13!

which agrees with Eq.~3.2! whenl50 andn51/2, i.e., in
the limit of perfect plasticity. Note that we have chosen t
parameters in Fig. 1 to lie within this range. If, on the oth
hand,lsy@1, thens`

th'1/2l. Here the threshold lies below

FIG. 5. Threshold stress in units of the yield stress as a func
of l in units of 1/sy . Note that for soft materials, the threshold f
unbounded failure is smaller than the yield stress.
te

-

e
r

sy ; the material is highly deformable and conventional pla
ticity theory has no range of validity. We illustrate this poi
in Fig. 5.

Expanding the solutions of Eqs.~4.8! and ~4.9! to first
order in v, we find the following behavior near threshold
For sy /m!2lsy!1,

v'
2l

t
@112lsy ln~lsy!# ~s`2s`

th!, ~4.14!

and, forlsy@1,

v'
l

t
~s`2s`

th!. ~4.15!

In each of the last two equations, the quantitys`
th has the

value computed in the corresponding limit in the previo
paragraph.

We have studied the behavior of the similarity solutio
~4.8!–~4.10! numerically. Just as in the Bingham plastic, t
deviatoric stress at the surface of the hole in the STZ m
rial grows with the hole expansion ratev, as shown in Fig.
6. While intuitively obvious, this result is relevant to unde
standing stress transmission to brittle crack tips. In Fig. 7
show thel-dependence of the stress for a slowly expand
hole. This solution is essentially thev→0 limit obtained in
Eq. ~4.11!. In a ‘‘softer’’ material with largerl, the plastic
zone shrinks and disappears completely for a large eno

n FIG. 6. Similarity solutionss̃@r /R(t)# in units of m for three
different values of the hole growth ratev measured in units of 1/t.
lsy50.005,sy50.1m.

FIG. 7. Similarity solutionss̃@r /R(t)# in units of m for three
different values oflsy for a small growth ratevt50.0001.
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PRE 60 6983RATE-AND-STATE THEORY OF PLASTIC . . .
l. This softening of the material for largerl leads to the
decrease in the threshold stresss`

th above which dynamic
failure modes exist.

V. DISCUSSION

Our principal point is that the STZ model, a simple e
ample of a rate-and-state theory, provides an extremely c
pact and physically motivated description of essentially al
plasticity theory, both static and time dependent. In just t
constitutive relations,~4.1! and~4.2!, containing just two di-
mensionless groups of parameters,sy /m andlsy , plus one
time constantt, we capture linear viscoelasticity at sma
stress, strain hardening at larger stress, and a dynamic
sition to viscoplasticity at a yield stress. All of these prop
ties have been described previously in@2# for homogeneous
situations and in@10# for an inhomogeneous one-dimension
case.

In this paper, our principal interest has been to make c
tact with conventional theories of plasticity by looking
deformation near a circular hole. As a rule, we recover c
ventional results when bothsy!m andlsy!1. The first of
these conditions, that the yield stress must be much less
the shear modulus, is generally true for ordinary materi
The second condition, according to Eq.~4.4!, says that the
plastic strain at which large-scale deformations start to oc
must be much smaller than unity. This too is ordinarily s
isfied by rigid solids. However, it remains to be seen whet
this l-dependent condition might be modified in more re
istic parameterizations of rate-and-state theories.

One place where the rate-and-state theory differs qua
tively from conventional plasticity is in the interpretation
the strain hardening curve~4.4!. Here, this curve must be
interpreted as thet→` limit of the dynamic inelastic re-
sponse to an externally applied stress, not as an insta
neous response that is mathematically equivalent to non
ear elasticity. Moreover, the parameterl that determines the
deviation from perfect plasticity in Eq.~4.4! is the same pa-
rameter that appears in the viscoplastic law~4.6!, and is also
the same parameter that determines both the shape o
plastic zone and the thresholds`

th at which static solutions
give way to time-dependent, unbounded failure modes.

Perhaps the single most important advantage of the S
theory is that the material in the plastic zone is characteri
not just by the stress and corresponding displacement fi
but also by the state variableD. This variable tells us in a
natural way that the material inside the zone will respo
-
f
o

n-
-

l

n-

-

an
s.

ur
-
r

-

a-

ta-
n-

the

Z
d

ds

d

differently to subsequent changes in stress than will the
deformed material outside it. To take advantage of this f
ture, however, we must go beyond the truncated version
the STZ model that we have used here and include
strongly nonlinear,s-dependent rate factor derived in@2#.

Without doing any further calculations, we can see h
the nonlinear rate factor produces memory effects. Supp
that we start in a stressed configuration such as the
shown in Figs. 1 and 2 in which a plastic zone has form
around the hole; and suppose that we then unload the sy
by quickly reducing the external stress to zero. Ats50, the
rate factor becomes extremely small; in the absence o
stress that can induce transitions from one orientation to
other, the zones remain as they were in the previou
stressed state. That is,D(r ) remains unchanged on unload
ing. The system relaxes elastically, but the plastic degree
freedom do not revert to their earlier values. According
there must be residual stresses in the region near the h
The material will ‘‘remember’’ the magnitude and directio
of its previous loading because it ‘‘knows’’ the functio
D(r ), which will determine via the nonlinear generalizatio
of the constitutive equations~4.1! and ~4.2! what happens
when new stresses are applied.

The other feature that we have emphasized in this anal
is the dynamic failure that occurs ats`

th , a feature that also
occurs in the conventional time-dependent theories. We
lieve that the dynamic growth modes may provide a clue
solving a long-standing puzzle in the theory of fracture, s
cifically, the question of how breaking stresses can be tra
mitted through plastic zones to crack tips. This puzzle p
tains to quasistatic crack advance, which would seem to
impossible if, as in conventional plasticity theory, th
stresses near a crack tip are constrained to be less tha
equal to the yield stress. The new modes, especially th
that occur when there is appreciable deviation from perf
plasticity, raise the possibility that, like the growing hol
crack growth could occur via plastic flow near the tip. W
hope to explore this possibility in a subsequent report.
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